10장, 클래스

2022.06.25

클래스 체계

클래스를 정의하는 표준 자바 관례에 따르면, 가장 먼저 변수 목록이 나온다. 정적 공개 상수가 있다면 맨 처음에 나온다. 다음으로 정적 비공개 변수가 나오며, 이어서 비공개 인스턴스 변수가 나온다. 공개 변수가 필요한 경우는 거의 없다.

변수 목록 다음에는 공개 함수가 나온다. 비공개 함수는 자신을 호출하는 공개 함수 직후에 넣는다.

즉, 추상화 단계가 순차적으로 내려간다. 그래서 프로그램은 신문 기사처럼 읽힌다.

캡슐화

변수와 유틸리티 함수는 가능한 공개하지 않는 편이 낫지만 반드시 숨겨야 한다는 법칙도 없다. 때로는 변수나 유틸리티 함수를 protected로 선언해 테스트 코드에 접근을 허용하기도 한다. 우리에게 테스트는 아주 중요하다. 같은 패키지 안에서 테스트 코드가 함수를 호출하거나 변수를 사용해야 한다면 그 함수나 변수를 protected로 선언하거나 패키지 전체로 공개한다. 하지만 그 전에 비공개 상태를 유지할 온갖 방법을 강구한다. 캡슐화를 풀어주는 결정은 언제나 최후의 수단이다.

클래스는 작아야 한다!

클래스를 만들 때 첫 번째 규칙은 크기다. 클래스는 작아야 한다. 두 번째 규칙도 크기다. 더 작아야 한다.

함수는 물리적인 행 수로 크기를 측정했다. 클래스는 다른 척도를 사용한다. 클래스가 맡은 책임을 센다.

public class SuperDashboard extends JFrame implements MetaDatauser {
  public Component getLastFocusedComponent()
  public void setLastFocused(Component lastFocused)
  public int getMajorVersionNumber()
  public int getMinorVersionNumber()
  public int getBuildNumber()
}

메서드 다섯 개 정도면 괜찮다. 하지만 여기서는 아니다. SuperDashboard는 메서드 수가 작음에도 불구하고 책임이 너무 많다.

클래스 이름은 해당 클래스 책임을 기술해야 한다. 실제로 작명은 클래스 크기를 줄이는 첫 번째 관문이다. 간결한 이름이 떠오르지 않는다면 필경 클래스 크기가 너무 커서 그렇다. 예를 들어, 클래스 이름에 Processor, Manager, Super 등과 같이 모호한 단어가 있다면 클래스에다 여러 책임을 떠안겼다는 증거다.

단일 책임 원칙

단일 책임 원칙은 클래스나 모듈을 변경할 이유가 하나, 단 하나뿐이어야 한다는 원칙이다. SRP는 책임이라는 개념을 정의하며 적절한 크기를 제시한다. 클래스는 책임, 즉 변경할 이유가 하나여야 한다는 의미다.

겉보기에 작아보이는 목록 SuperDashboard는 변경할 이유가 두 가지다. 첫째, SuperDashboard는 소프트웨어 버전 정보를 추적한다. 그런데 버전 정보는 소프트웨어를 출시할 때마다 달라진다. 둘째, SuperDashboard는 자바 스윙 컴포넌트를 관리한다. 즉, 스윙 코드를 변경할 때마다 버전 번호가 달라진다. SuperDashboard에서 버전 정보를 다루는 메서드 세 개를 따로 빼내 Version이라는 독자적인 클래스를 만든다.

규모가 어느 수준에 이르는 시스템은 논리가 많고도 복잡하다. 이런 복잡성은 다루려면 체계적인 정리가 필수다. 그래야 개발자가 무엇이 어디에 있는지 쉽게 찾는다.

큰 클래스 몇 개가 아니라 작은 클래스 여럿으로 이뤄진 시스템이 더 바람직하다. 작은 클래스는 각자 맡은 책임이 하나며, 변경할 이유가 하나며, 다른 작은 클래스와 협력해 시스템에 핑료한 동작을 수행한다.

응집도, Cohesion

클래스는 인스턴스 변수 수가 작아야 한다. 각 클래스 메서드는 클래스 인스턴스 변수를 하나 이상 사용해야 한다. 일반적으로 메서드가 변수를 더 많이 사용할수록 메서드와 클래스는 응집도가 더 높다. 모든 인스턴스 변수를 메서드마다 사용하는 클래스는 응집도가 가장 높다.

일반적으로 이처럼 응집도가 가장 높은 클래스는 가능하지도 바람직하지도 않다. 그렇지만 우리는 응집도가 높은 클래스를 선호한다. 응집도가 높다는 말은 클래스에 속한 메서드와 변수가 서로 의존하며 논리적인 단위로 묶인다는 의미기 때문이다.

응집도를 유지하면 작은 클래스 여럿이 나온다

큰 함수를 작은 함수 여럿으로 나누기만 해도 클래스 수가 많아진다. 예를 들어, 변수가 아주 많은 큰 함수 하나가 있다. 큰 함수 일부를 작은 함수 하나로 뺴내고 싶은데, 빼내려는 코드가 큰 함수에 정의된 변수 넷을 사용한다. 그렇다면 변수 네 개를 새 함수에 인수로 넘겨야 옳을까?

전혀 아니다! 만약 네 변수를 클래스 인스턴스 변수로 승격한다면 새 함수는 인수가 필요없다. 그만큼 함수를 쪼개기 쉬워진다.

불행히도 이렇게 하면 클래스가 응집력을 잃는다. 몇몇 함수만 사용하는 인스턴스 변수가 점점 더 늘어나기 때문이다. 클래스가 응집력을 잃는다면 쪼개라!

큰 함수를 작은 함수 여럿으로 쪼개다 보면 종종 작은 클래스 여럿으로 쪼갤 기회가 생긴다. 그러면서 프로그램에 점점 더 체계가 잡히고 구조가 투명해진다.

변경하기 쉬운 클래스

대다수 시스템은 지속적인 변경이 가해진다. 그리고 뭔가 변경할 때마다 시스템이 의도대로 동작하지 않을 위험이 따른다. 깨끗한 시스템은 클래스를 체계적으로 정리해 변경에 수반하는 위험을 낮춘다.

public class Sql {
  public Sql(String table, Column[] columns)
  public String create()
  public String insert(Object[] fields)
  public String selectAll()
  public String findByKey(String keyColumn, String keyValue)
  public String select(Column column, String Pattern)
  public String select(Criteria criteria)
  public String preparedInsert()
  private String columnList(Column[] columns)
  private String valuesList(Object[] fields, final Column[] columns)
  private String selectWithCriteria(String criteria)
  private String placeholderList(Column[] columns)
}

위의 예제 코드는 언젠가 update 문을 지원할 시점이 오면 클래스에 손대어 고쳐야 한다. 문제는 코드에 손대면 위험이 생긴다는 사실이다. 어떤 변경이든 클래스에 손대면 다른 코드를 망가트릴 잠정적인 위험이 존재한다. 그래스 테스트도 완전히 다시 해야 한다.

...

public class SelectSql extends Sql {
  ...
}

public class InsertSql extends Sql {
  ...
}

public class Where {
  public Where(String Criteria)
  public String generate()
}

public class ColumnList {
  public ColumnList(Column[] columns)
  public String generate()
}

각 클래스는 극도로 단순하다. 코드는 순식간에 이해된다. 함수 하나를 수정했다고 다른 함수가 망가질 위험도 사실상 사라졌다. 테스트 관점에서 모든 논리를 구석구석 증명하기도 쉬워졌다. 클래스가 서로 분뤼되었기 때문이다.

update 문을 추가할 때 기존 클래스를 변경할 필요가 전혀 없다는 사실 역시 중요하다! update 문을 만드는 논리는 Sql 클래스에서 새 클래스를 UpdateSql을 상속받아 거기에 넣으면 그만이다.

위처럼 재구성한 Sql클래스는 세상의 모든 장점만 취한다. SRP를 지원하며, OCP도 같이 지원한다. OCP란 클래스는 확장에 개방적이고 수정에 폐쇠적이어야 한다는 원칙이다.

새 기능을 수정하거나 기존 기능을 변경할 때 건드릴 코드가 최소인 시스템 구조가 바람직하다. 이상적인 시스템이라면 새 기능을 추가할 때 시스템을 확장할 뿐 기존 코드를 변경하지는 않는다.

변경으로부터 격리

요구사항은 변하기 마련이다. 따라서 코드도 변하기 마련이다. 객체 지향 프로그래밍 입문에서 우리는 구체적인 클래스와 추상 클래스가 있다고 배웠다. 구체적인 클래스는 상세한 구현을 포함하며 추상 클래스는 개념만 포함한다고 배웠다.

상세한 구현에 의존하는 클라이언트 클래스는 구현이 바뀌면 위험에 빠진다. 그래서 우리는 인터페이스와 추상 클래스를 사용해 구현이 미치는 영향을 격리한다.

테스트가 가능할 정도로 시스템의 결합도를 낮추면 유연성과 재사용성도 더욱 높아진다. 결합도가 낮다는 소리는 각 시스템 요소가 다른 요소로부터 그리고 변경으로부터 잘 격리되어 있다는 의미다. 시스템 요소가 서로 잘 격리되어 있으면 각 요소를 이해하기도 더 쉬워진다.

결합도를 최소로 줄이면 자연스럽게 또 다른 클래스 설계 원칙인 DIP를 따르는 클래스가 나온다. 본질적으로 DIP는 클래스가 상세한 구현이 아니라 추상화에 의존해야 한다는 원칙이다.